9,049 research outputs found

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Analytical Blowup Solutions to the Pressureless Navier-Stokes-Poisson Equations with Density-dependent Viscosity in R^N

    Full text link
    We study the N-dimensional pressureless Navier--Stokes-Poisson equations with density-dependent viscosity. With the extension of the blowup solutions for the Euler-Poisson equations, the analytical blowup solutions,in radial symmetry, in R^N are constructed.Comment: 12 Pages, more detail in the introduction to explain the validity of the mode

    MEMS flow sensors for nano-fluidic applications

    Get PDF
    This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heater’s temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data

    Damage Detection of Structural Systems with Noisy Incomplete Input and Response Measurements

    Get PDF
    A probabilistic approach for damage detection is presented using noisy incomplete input and response measurements that is an extension of a Bayesian system identification approach developed by the authors. This situation may be encountered, for example, during low-level ambient vibrations when a structure is instrumented with accelerometers that measure the input ground motion and structural response at a few locations but the wind excitation is not measured. A substructuring approach is used for the parameterization of the mass and stiffness distributions. Damage is defined to be a reduction of the substructure stiffness parameters compared with those of the undamaged structure. By using the proposed probabilistic methodology, the probability of various damage levels in each substructure can be calculated based on the available data. A four-story benchmark building subjected to wind and ground shaking is considered in order to demonstrate the proposed approach
    corecore